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Magneto-Optical Rotation in Molecules*
II. The Yerdet Constant for the Hydrogen Molecule
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The Verdet constant for the hydrogen molecule is calculated using the general formula
derived in the previous paper. The excited states up to and including n = 4 are considered.
The result well compares with the experiments. It is found that the magnetic rotation in the
hydrogen molecule is due almost entirely to the excited (1so) (2pn) and (1s0) (4pn) states.

Die Verdet-Konstante wird mit Hilfe einer allgemeinen Formel (Teil I) fiir Wasserstoff
berechnet. Das Ergebnis stimmt mit den Experimenten gut iiberein. Es ergibt sich, dal die
magnetische Drehung in Wasserstoff fast vollstéindig den angeregten Zustdnden (1sc¢) (2p7)
und (1s0) (4pr) zZugeschrieben werden muB.

La constante de Verdet de la molécule d’hydrogéne est calculée & 1'aide de la formule
générale établie dans Particle précédent. Les états excités sont considérés jusqu’a » = 4 inclus.
Les résultats sont en bon accord avec les données expérimentales. La rotation magnétique
de la molécule d’hydrogéne est diie presque totalement aux états excités (1so) (2pn) et
(1s0) (4p7). ’

1. Introduction

In a previous paper [£] (hereafter called Part I), we have derived a general
formula for the magneto-optical rotation of diamagnetic molecules, including the
contribution of the induced magnetic moments and of the perturbed Boltzmann
factors. The Verdet constant, which is the rotation of the plane of polarization
per gauss per cm, was shown to be temperature dependent for general polyatomic
molecules of all symmetry classes.

In spite of the large number of theoretical investigations, there have been few
quantitative calculations of the angle of rotation, namely of the Verdet constant.
STePHEN [11] and Stoxe [12] have computed purely theoretically the magnetic
rotatory dispersions in molecules of tetrahedral symmetry. They obtained the
agreement with the measured dispersion in the accuracy of about 2 min in a
region well removed from resonance with any absorption line but poor results in
the neighbourhood of absorption lines. This may be due to the use of the same
dispersion equation in both regions. As mentioned in the opening paragraph of
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the previous paper, it is quite clear that the phenomena in these two regions are
rather different and should be treated separately.

Magneto-optical rotation experiment on gases and vapours requires a special
technique to measure very small angle of rotation. An excellent series of experi-
mental works has been published by INGERSOLL and LIEBENBERG [6], who elimin-
ated most of the experimental errors and measured the Verdet constant of many
common gases with considerable accuracy. ToBras and Kavzmany [14] examined
the relationship between the theoretical expression for the Verdet constant
obtained by SErBER [10] and some of the observed values given by INGERSOLL
and LirBENBERG. For diamagnetic diatomic and linear triatomic molecules, they
obtained the approximate proportionality between » V"2 and 2, which yields an
empirical expression of the form

V= A4y9*0f — v?)? 1)
where 4, and v, are constants. This means that INGERSOLL and LIEBENBERG’S
measurements of the rotation in above mentioned molecules are representable
almost exactly by the so-called “normal” Verdet constant. Hoveex [3] explained
the anomalous magnetic rotation of oxygen by including the interaction of the
spin magnetic moment with the magnetic field of the light wave and obtained an
empirical expression which can be fitted to the experimental data.

The purpose of the present paper is to demonstrate the purely theoretical
calculation of the Verdet constant using the general formula obtained in Part T.
Since in general our knowledge of molecules, specifically of their excited state
wave functions, is not sufficient to permit explicit caleulation of every terms
required by Eq. (64) of Part I, and at the same time the existing measurements
of the rotation is not considered to be completely reliable, comparison of the
theoretical and observed Verdet constants might be meaningless. Nevertheless,
it is believed that a numerical check of the general formula given in Part I for a
simple molecule will throw light on further applications to more complicated
molecules. In this paper, the hydrogen molecule is taken up as a pilot. A pre-
liminary report has been published previously [5].

2. Method of Caleuiation

If a molecule is diamagnetic in its ground state, the diagonal elements of the
angular momentum operator, namely {(n | M | n) in Eq. (64) of Part I, vanish so
that the Verdet constant comes out to be temperature-independent. Moreover,
the scalar triple product of the magnetic dipole moment,

(o | M|y’ [ W] a"> <a” | M0y,
is very small for diamagnetic molecules (this quantity actually vanishes in case

of the hydrogen molecule). The Verdet constant of such molecules, therefore, can
be expressed in a more concise form:

V=(4m* Nv3[3h%c) 3 By Im 2 [—2v (0 n) 72 (0" n){n' | M| 0" x
X <n | R |0y n ]?R]n)——vﬁzv(n’n)r(n'nxnliﬁ[n}(n|E}%]n’><n’]§)ﬁ|n>+
+ vt ey {r( n) — @ w)}n | R|{n> | MnD D" R0y ~

Wi En
—2 vt )T ) {n|Rin) R |R]a"D B[ M| )] (2)

n’#En
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where » (1 n) is the energy difference between states ' and #» measured in units
of reciprocal seconds and

T(n n) =1/ (0 n)—»*. (3)

If the excited vibrational and electronic states are sufficiently greater in
energy than the ground state, the statistical weight of the ground state By could
be replaced by unity and the summation over # could not be required. For homo-

nuclear diatomic molecules, there exists no nonvanishing diagonal element of the
electric dipole moment operator, {n | & | n), so that Eq. (2) further reduces to

V=(4n2Nv2/3kzc)fmZ[—2v(n’n)12(n'n)<n'[%(n')(n[%{n')><
X <n' | Riny+ Zvlnn {r (0 n) —

—znn}(nﬁ}%]n)(n|9]2}n”><n”|8%]n>— (4)
—2 >yt n)r(w n)ln|R{n>O [ R <" | M| 0]
n"£En

which is the working formula for the Verdet constant of diamagnetic homo-
nuclear diatomic molecules.

If atomic orbitals up to and including n =4 (% is the principal quantum
number) are considered, it will be found in a later paragraph that only contribu-
tions from 2p,, 2p+, 2p—, 3p4+, 3p—, 4p; and 4p_ atomic orbitals are obtained.
Namely, the excited states which contribute to the magnetic rotation will be
(1s0) (2pz), (Lso) (3pxm), (Lso) (4pm), and (1so) (4dps), the former three being
doubly degenerate (doubly excited configurations are neglected).

(1s0)? N =Ny {sa (1) + s (D)} {sa (2)+ s (2)}
(1s0) 2pm): I = Ny {5 (1) + sp (1)} {7a (2) + 75 (2)}
(1s0) Bpm): I1" = Ny {sa (1) + s» (1)} {7 (2) + 73 (2)} (3)
(1s0) dpm): 1" = N, {sa (1) + sp (1)} {m; (2) + 75 (2)}
(1s0) (4po): & = N; {ss (1) + 8 (1)} {oa (2) + 00 (2)}

where the z-axis is taken on the line joining both hydrogen atoms @ and b. The

degenerate func‘mons II, IT', and I1" are obtained by replacing =, #’, and 7" by
7, ', and 7", respectively. Each atomic orbital in Eq. (5) is a normalized hydrogen
wave function,

s = (1fm)> exp (— 1)
o = (1/2)2 (1/2 7)'2 7 exp (— 7/2) cos O

} = (1/2)3 (1/m)'2 r exp (— 7/2) sin B exp ( + i B)

a9 Q] 9

} = (1/3)* (1/7z)1/2 (67— r2)exp (— r/3)sin fexp (£ ¢ ) (6)

Z/, } = (1/2)? (1/10 7)"/= (80 » — 20 72 + #3) exp ( — 7/4) sin § exp ( + 7 )

and N; is the normalization constant,
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Ny =1/ (2428)

Ny=1/12(1 + 8" (1 + 8x)"]

Ny=1/[2 (14 8)" (1 + 8u)"] (7)

Ny= 112 (L + 8 (1 + 8u)'h]

Ny=1/[2 (1 + 8)" (1 + 8,)']
where S, S, and S, are the overlap integrals between the same kind of atomic
orbitals shown in Eq. (6). We have used Bohr unit (@, = 0,52917 A) for the unit
of length.

For molecules possessing cylindrical symmetry, the selection rule for the
quantum number /1 which is the projection of the orbital angular momentum on
the line joining the nuclei, say the z-axis, shows that the nonvanishing matrix
elements of an arbitrary vector physical quantity I" are [7]

n, AT |0/, A, <, A Ty + i Ty [0, A =15, {n, A — 1 | Ty — iy |, A . (8)
Here n stands for the assembly of quantum numbers labeling the state with the
exception of A. If, in addition, the molecule is homonuclear diatomic, there is
also a selection rule regarding parity. The matrix elements of a polar vector such
as the electric dipole moment are non-zero only for transitions between states of
opposite parity. The reverse is true for an axial vector such as the magnetic dipole
moment. Therefore, one can easily show that only matrix elements of the electric
dipole moment % and the magnetic dipole moment I,
(N |R.|Z, G| R | N>

(I | Ry+iRy| Ny

also for IT’, I1” and IT, IT', and IT” (the same in the following)
V| Ry — i By | [T, (I | M, | ITy, <IT | My + i My | 5 (©)

|\ My—iMy|II

are nonvanishing.

Expanding the scalar triple product in the first term of Eq. (4) into their
components and applying the selection rules mentioned above, one obtains

— Im’S 2v (IT, N) 72 (I, N) (¢® h2imc) m (T, IT) x (10)
7
x{z (N, )y (I, N) — y (N, II) x (I, N)}

where we have redefined

R=er, I = (eh2 imc) m (11)
and used abbreviations such as
o (N, IN)=<N |z |II). (12)

The summation in Eq. (10) should be carried out over all I/-type functions shown

in Eq. (5) and their complex conjugates. A relationship obtained from the selec-

tion rule

y (N, Iy =14x (N, ) (13)

together with identities ‘
(I, N)= «({N,II)= «(N,II)==2I,N) (14)
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makes both terms in the curly bracket in Eq. (10) equal, so that the first term
of Eq. (4), exclusive of the coefficient before the summation symbol, turns out to be

Im 3 &y (IT, N) 22 (IT, Ny m, (IT, IT) | = (N, IT) |2 (15)
a

where it should be noted that « (N, I7) is real but m, ({1, I1) is a purely imaginary
quantity; the prime on the summation sign indicates that the degenerate states

I, IT’, and IT" are to be omitted.
The second terms of Hq. (4) can be expanded into

Im’S (¢8 B2 ime) vt (E, I) {x (T, N) — 7 (, M)} {& (N, IT) my (I1, ) —
Ir

—y (N, I)ymy (ILE} 2 (B, N) + v (IL,E){z &, N) - (L, N)} (16)

Table 1. Integrals over Atomic Orbitals

integral a.u. integral

{Sa | 2| 7a) 0.526749 (os | my | 70a) 0.707107

(sa | 2| 7p) 0.479106 (00 | my | 700 0.637396

(sa | 2] al) 0.210938 (0a | my | 7l ) 0

Salz|m) 0.183579 (o0 | my |73 ) ~0.017344

(8a || 72 0.124346 {oa | my | 75) 0

(a |z |7y 0.104779 (60| my | ) -0.0151562

(8a |2z | 0a) 0.744936 s ={(sal sp) 0.752943

a2 | 00) 0.792305 So ={(0a | Op) 0.862201
S o= (Ta | 75 ) 0.952881
sy o= {my | 7w ) 0.972581
sy o= {ay | 7)) 0.826924

In the same way as before, the identities Eqgs. (13) and (14) together with

2, N)=2z(N,X) 17
and
my (I, 3) = —my (5, I1) = — img (I, T) = i my (S, [T) = my (II,Z) = i my, (11, 2)

make each term in Eq. (16) and also a term arising from a degenerate state equal,
so that one gets

>4yt (3, IN{r I, N) — 7 (&, N)} 2 (N, [I)my (X, )z (N, X) (18)
7

where the prime on the summation sign has the same meaning as in Eq. (15).
It can be easily shown that there is no contribution from the third term in Eq. (4).
Altogether, the Verdet constant for the hydrogen molecule can be expressed as

V = (16 7e? Nv¥[3 h me?) 3 [v (N, IT) 22 (II, N) Fm {m, ([I, II)} | « (N, IT) |* +
Ir
(3, I0) {o (IT, N) — v (S, N)} 2 (N, IT) my (, IT) 2 (N, D)] - (19)

All integrals over molecular orbitals appeared in Eq. (19) can be expressed in
terms of integrals over atomic orbitals, which numerical values are obtained using
prolate spheroidal coordinate and are shown in Tab. 1. The internuclear distance
in the hydrogen molecule was assumed to be 1.40 a.u. The molecular electronic
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states in the hydrogen molecule, which contribute to the magneto-optical rotation,
are schemaftically shown in Fig. 1. The observed values of the transition energy
for the lower two transitions measured in units of 10 sec—?! are

v (IT, N) = 2.999189 [1]

Ull
» (IT', N) = 3.414248 [13]  (20) e
but there have been no data available i
for » (I1”, N) and » (X, N). According to
Rrcmarpson’s assignment [9], it is likely
that (1s0) (4po) state lies in 118,029 em1 /4
above the ground state ; namely the value
v (X, N) = 3.538391 (21)
g 8§ T 8
in unit of 1075 sec~! was adopted. On the S 3 & 9
other hand, (1sc) (4pm) state seems to lie a T 7T T
little higher in energy than (1s¢) (4pc) sta-
te, as can be seen in the molecular energy
diagram[&].Therefore,it was assumed that N
v (1", N) = 119,000 cm~! Fig. 1. Molecular Eleotronic States in H,, which
BT x A0 seo-t,  (22) N S b ey e

3. Results and Discussion

Tab. 2 shows an example of calculations of the Verdet constant when the
frequency of the incident light » is 0.519029 x 105 sec~ (5780 A). In the first
column, are shown the product of the matrix elements appeared in Eq. (19).
Their numerical values are given in the second column in units of 1018 cm?
The last column presents the contribution of each term to the total Verdet constant
in units of 4 min per oe-cm-atm (hereafter abbreviated as y min). Total Verdet
constant 7.861 y min*, shown at the bottom of Tab. 2, well compares with the
corresponding experimental value 6.269 y min reported by INGERSOLL and
LizsENBERG. It can be seen in the last column of Tab. 2 that the contribution
of (1s0) (2pm) and (1so) (4po) amounts to 7.518 y min which is 969, of the total
Verdet constant. This means that the uncertainty involved in estimating the

Table 2. The Matriz Elements and the Verdet Constant

Matrix Elements 10716 om? Contribution to ¥, u min
x (N, IT Yymy (3, IT ) 2 (N, Z) 0.091324 4.747
2 (N, I ) my (E, Iy 2 (N, X) —0.000447 -0.019
x (N, IT"y my (Z, I1”) 2 (N, Z) —0.000245 —-0.010
—ime (I, IT )|z (N, IT) ? 0.082769 2.771
—ime (IT", IT") | (N, I1') |2 0.012604 0.282
—tme (117, IT") | « (N, I17) |? 0.004590 0.090
(Total) 7.861

* In the previous paper, ref. [5], a factor of two has been omitted in the general formula
for the Verdet constant, so that the calculated value was about one half of the value reported
here in this paper.

2 Theoret. chim, Acta (Berl.) Vol. 6
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location of the (1sc) (4pm) state may be out of the question. At the same time,
it will be concluded that the magnetic rotation in the hydrogen molecule is due
almost entirely to the two excited states mentioned above.

We cannot judge at this stage, however, whether the uncertainty involved in
the experimental value of v (X, N) leads to rather large theoretical Verdet con-
stant (about 259, larger than the observed one). The reason is that if one wants
to reproduce the observed value 6.269 y min exactly, one has to assign » (Z, N)
to be 4.652326 x 105 sec~! (155,186 cm—1), but this value is obviously meaningless
because it exceeds the observed ionization limit 124,429 cm—! [2]. It may then
be tentatively concluded that experimentally undefinite quantity » (X, V) is not
very different from the value adopted in Eq. (21).

5 S

min.foe-cm-atm
o
D

Vp

Uy

Fig. 2. Magnetic Rotatory Dispersion in H,. 1. Calculated; 2. Observed [6].

In Fig. 2, the calculated magneto-optical rotatory dispersion is compared
graphically with the experimental curve obtained by IN¢ERSOLL and LIEBENBERG.
Over-all discrepancy is about 25%,, and this may indicate that if more accurate
wave functions are used almost complete agreement could be obtained. As stated
in sec 1, ToB1as and KAvzMANN have shown that the same experimental dis-
persion curve is well represented by an expression of the so-called normal Verdet
constant shown in Eq. (1) with 44 = 2.72 x 103 4 min sec~? and v, = 3.33 x 108
sec~l, From the theoretical viewpoint, on the other side, if v (%, IT) were made
small compared to » (If, N) — v, one could approximately put

y1 (S, IT) {z (T, N) — © (S, N)} ~ 2 (IT, N) 22 (I, ) (23)
so that Eq. (19) reduces to
V = (16 7w €8 Nv2[3 h mc?) > v (I, N) 22 (II, N) [Im {m, (I, I)} | = (N, IT) |* +
I

+ 22 (N, IT) my (&, II) z (N, 2)] (24)

which contains the normal term only. Although this is actually not the case [the
ratio v (X, I1): (v (II, N) — ») is about 1:6], there is no telling whether the rota-
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tion in the hydrogen molecule is not exactly representable by the normal Verdet
constant. Good excited state wave functions or more reliable measurements of
the magnetic rotation will make the situation clearer.
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